IMCUSTOMEYE
  • Home
  • ABOUT US
    • The Project
    • The PARTNERS >
      • CSIC
      • University of Liverpool
      • NUI Galway
      • PAN
      • IOFV
      • UCL/Moorfields Eye Hospital
      • IROC Science
      • Optimo Medical
      • Oculus
      • 2EyesVision
  • NEWS
  • BLOG
  • Videos
  • LIBRARY
    • Flyers
    • Newsletters
    • Deliverables
  • CONTACT

Stimulating the cornea with air and sound

11/11/2020

0 Comments

 
by Andrew Nolan, Postdoctoral Researcher at National University of Ireland Galway
It has been noted in previous blog posts that an understanding of the biomechanics of the cornea is fundamental in the detection and treatment of corneal abnormalities such as keratoconus or corneal ectasia. The typical approach to measuring the mechanical properties of an object is to stimulate the object with some external force and measure the response of the object. 

Since the 1950’s, Goldmann tonometry has been the gold-standard in the measurement of intra-ocular pressure. This involves applying an air puff to the eye and measuring force required to flatten, or applanate, the cornea. 

Analysing high frequency OCT images of the deformation of the cornea in response to the applied air puff, information about corneal biomechanics, corneal stiffness and viscoelasticity, can be obtained. A clinical device capable of providing such corneal biomechanical information, based on two trusted and well-established technologies, air-puff tonometry and OCT, would be of great benefit to clinicians in diagnosis and treatment planning. 
Picture
Figure 1. Schematic of experimental setup

​​In parallel to this, much can be learned about the mechanical properties of an object by observing the frequencies at which it responds to a stimulus. In work being carried out here in NUIG, in collaboration with our partners in CSIC and 2EyesVision, a system is being developed to stimulate the cornea over a range of frequencies using sound excitation. By exciting the cornea over an appropriate range of frequencies using a speaker and measuring the response of the cornea using OCT or other interferometric systems, a full picture of the frequency response of the cornea can be formed. 
Picture
Figure 2. Frequency response of ex-vivo porcine eye

​Based on simulations carried out by our colleagues in the University of Liverpool, a possible biomarker has been isolated which would relate corneal frequency response to corneal abnormality. Developing our stimulation and measurement technologies further, we hope to produce a hand held, low cost screening device for corneal abnormality. This device will provide a valuable tool for community screening of diseases such as keratoconus which can cause such difficulty if not detected early.
0 Comments

Why OCT?

8/17/2020

0 Comments

 
by Alejandra Consejo, Postdoc Researcher & Assistant Professor, Polish Academy of Sciences
IMCUSTOMEYE will join Optical Coherence Tomography (OCT) with dynamic imaging of the cornea to assess its biomechanical properties and bring this technology into the clinic with portable instrumentation.

OCT is a non-invasive imaging test. ‘Optical’ refers to light. ‘Coherence’ refers to a property of light, and ‘Tomography’ is imaging by sections (slides). OCT uses low-coherence light to capture micrometer-resolution, two- and three-dimensional images from within optical scattering media (e.g., biological tissue).

Optical coherence tomography is one of a class of optical tomographic techniques. Commercially available OCT systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology. The advent of OCT imaging has changed the way ophthalmologists image the ocular surface and anterior segment of the eye. Its ability to obtain a dynamic, high, and ultra-high resolution, cross-sectional images of the ocular surface, and anterior segment in a non-invasive and rapid manner allows for ease of use. 

The Physical Optics and Biophotonics Group at the Polish Academy of Sciences, lead by Prof. Maciej Wojtkowski, is a pioneer in developing new, top-class imaging systems and specialized in Optical Coherence Tomography technology. Figures 1 and 2 are examples of OCT developments performed by prof. Wojtkowski’s team and collaborators.
Figure 1. Three-dimensional cutaway view of the human cornea acquired in vivo. Acquired from ‘In vivo imaging of the human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography’ (2020). This research work was developed by Prof. Wojtkowski’s team, and it is available in full here. 
Picture
Figure 2. Figure adapted from ‘Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis’ (2019), co-authored by Dr. Karnowski and Prof. Wojtkowski. Available in full here. This work uses enucleated porcine corneas to demonstrate the usefulness of imaging the cornea using OCT, while mechanically stimulating it with an air pulse, to gain information on corneal viscoelasticity. 
0 Comments

What is corneal biomechanics and why it is important?

4/3/2020

2 Comments

 

by Ahmed Elsheikh, Professor of Biomaterial Mechanics, University of Liverpool

Picture
​The cornea plays an important role in allowing us to form clear images of the world. It is responsible for two thirds of the refractive power of the eye, or its ability to focus light on the retina. This important function is only possible when the cornea maintains a particular curved shape, which depends on a fine equilibrium between the eye’s internal fluid pressure and the cornea’s mechanical resistance or biomechanics. 

With diseases, such as keratoconus, the cornea’s biomechanics deteriorates causing bulging, loss of the tissue’s regular shape and loss of clear vision.

The ability to measure corneal biomechanics is of great clinical importance. There are several processes and surgical procedures that either interact or interfere with corneal biomechanics, and in these cases, knowledge of biomechanics is essential for their customisation for individual patients’ needs.

For example, the ability to characterise the deterioration of corneal biomechanics in keratoconic eyes would enable customisation of a treatment regime called collagen cross-linking that can stiffen the tissue to its natural levels. Another example is in refractive surgeries such as LASIK and SMILE. These surgeries involve removing a tissue layer in order to re-shape the cornea’s front surface. With tissue loss, cornea’s stiffness reduces, allowing it to deform more under the eye’s internal pressure. In these applications, knowledge of corneal biomechanics would allow the accurate prediction of post-surgery corneal shape and hence better selection of surgery parameters.

Other applications include cataract surgeries where a peripheral incision is made in the cornea to enable removing the natural crystalline lens and introduction of the artificial intraocular lens in its place. This incision changes corneal biomechanics leading to changes in its geometry.

The ability to measure corneal biomechanics in vivo has been a major challenge. While we knew from ex vivo laboratory experiments that the biomechanics change with age and diseases (such as keratoconus, diabetes and glaucoma), we have not been able to measure the tissue’s biomechanical properties in vivo. 

Our IMCUSTOMEYE project is intended to address this challenge through the development of medical devices that can estimate corneal stiffness and viscoelasticity (the most important corneal biomechanical properties) in vivo. Initial results indicate the robustness of our new technologies and their suitability for clinical application within a few years of project end. Our studies will go beyond the measurement of corneal stiffness and viscoelasticity to their implementation to customise various clinical processes and procedures.
2 Comments

Introducing IMCUSTOMEYE, bringing light-based technologies to improve eye diagnostics and personalized surgery

2/28/2020

0 Comments

 
by Susana Marcos, CSIC, IMCUSTOMEYE Project Coordinator
IMCUSTOMEYE is an European Consortium of academic experts in ocular imaging and ocular biomechanics, eye clinics and companies, delivering a new technology to improve ocular diagnostics based on biomechanical biomarkers and personalized treatment.
 
The cornea is the most external lens in the eye. Along with the crystalline lens, it projects the images of the outside world onto the retina. The cornea is a transparent dome and its structural integrity relies on a finely interleaved collagen fibers. The regular shape of the cornea is therefore the result of its biomechanical rigidity.  However, the cornea is not a piece of plastic, and different corneas may respond differently to mechanical stimuli.
 
In several pathologies, such as keratoconus, the corneal weakens locally, resulting in corneal bulging and vision distortion. Keratoconus affects 1% of the population and treatment requires implating a supporting structure inside the cornea (intracorneal ring segments) or stiffening the cornea instilling a dye and irradiating with light (a technique called keratoconus).
 
There are other ocular conditions in which the cornea is reshaped or surgically open.  These conditions are highly prevalent, such as myopia that affects 30% of the population in western countries and 90% in some Asian populations; presbyopia, the age-related loss of dynami focusing capacity,  which affecs 100% of people older than 45; and cataract, the loss of transparency with affects 50% of the population older than 65. In corneal refractive surgery, used to correct eye’s refractive errors a laser is used to evaporate or remove corneal tissue to sculpt the cornea into a different shape.  Alternatively, new techniques are being developed where biomaterials or tissue is implanted in the cornea to  correct presbyopia. In cataract surgery, an intraocular lens is implanted through an incision that needs to be made in the cornea. While all these treatments rely  to a larger or lesser extent on  the mechanical response of the cornea, today there is no clinical instrument that either detects corneal mechanical abnormalities, or can help in predicting the mechanical response to surgery.
 
IMCUSTOMEYE, a Project funded by the European Commission Horizon 2020 program addresses this unmet medical need. IMCUSTOMEYE has gathered a highly internatonally reputed multidisciplinary group of experts in academia, industry and clinic to deliver and demonstrate a new clinical instrument which will put Europe in the forefront of personalized diagnostics in opthalmology.
 
The Project is Coordinated by VioBio Lab at the National Research Council (CSIC) in Spain, a group that has pioneered multiple optical imaging eye diagnostics and includes world leaders in biomedical optics and photonics at the Institute of Chemistry and Physics, of the Polish Academy of Sciences and National University of Ireland, Galway, and internationally reputed engineers experts in corneal biomechanics from the University of Liverpool.
 
International companies, selected for their unique technical expertise in the ophthalmic industry and strategic position in the field.  2EyesVision in Spain,which has launched headmounted diagnostic tolos to help in intraocular lens selection in cataract surgery. Oculus in Germany , with a large portfolio of clinical instruments, including the Corvis corneal deformation imaging   Optimeyes in Switzerland, with the only software worldwide to guide opthalmic surgical procedures. And IROC in Switzerland, and expert in bridging technology from the lab into a product in the ophthalmic market will ensure an efficient translation of the front-end laboratory designs and prototypes into a viable clinical instrument.
 
IMCUSTOMEYE’s team also includes most acclaimed ophthalmology clinics, Moorfields Eye Hospital and Instituto Oftalmologico Fernandez Vega, both with  flows of thousands of patients day and high clinical standards. The pilot clinical studies with the developed intrumentation will proof the technology and the expected benefits for patients.
0 Comments
Proudly powered by Weebly
  • Home
  • ABOUT US
    • The Project
    • The PARTNERS >
      • CSIC
      • University of Liverpool
      • NUI Galway
      • PAN
      • IOFV
      • UCL/Moorfields Eye Hospital
      • IROC Science
      • Optimo Medical
      • Oculus
      • 2EyesVision
  • NEWS
  • BLOG
  • Videos
  • LIBRARY
    • Flyers
    • Newsletters
    • Deliverables
  • CONTACT